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Introduction
Gestational diabetes mellitus (GDM) is a 
common complication during pregnancy. It 
is defined as any degree of glucose intoler-
ance with onset or first recognition during 
pregnancy (American Diabetes Association 
2013). GDM complicates up to 14% of 
all pregnancies depending on the popula-
tions observed. More than 200,000 cases 
were reported annually in the United States 
(American Diabetes Association 2013). 
GDM has adverse effects on both the 
mother and the developing fetus. About 
one-third of women with GDM will even-
tually develop type 2 diabetes (Linné et al. 
2002), and women with GDM also have 
higher long-term risks of cardiovascular 
diseases compared with those without GDM 
(Kitzmiller et al. 2007). In children, GDM 
has been associated with both perinatal and 
long-term adverse health outcomes such as 
macrosomia (Hughes et al. 1997), shoulder 
dystocia (Athukorala et  al. 2007), birth 
injuries (Mitanchez 2010), sustained glucose 
tolerance impairment (Silverman et al. 1995), 
obesity (Pettitt et al. 1985), and impaired 
intellectual abilities (Rizzo et al. 1997). GDM 
has also been associated with metabolic 

disturbances in offspring of mothers with 
GDM (Boerschmann et al. 2010; Clausen 
et  al. 2008; Lawlor et  al. 2011), and the 
prevalence of type 2 diabetes or pre-diabetes 
at 18–27 years of age was almost eight times 
higher among offspring of women with 
GDM compared with other children in a 
case–control study (Clausen et  al. 2008). 
Although previous studies have shown that 
treatment of GDM can reduce serious peri-
natal morbidity such as macrosomia at birth 
(Crowther et al. 2005), a recent study found 
no significant difference in body mass index 
(BMI) z-scores or BMI ≥ 85th percentile in 
children at 4–5 years of age whose mothers 
were treated for GDM (n = 94) compared 
with children whose mothers had GDM 
but received only routine care (n =  105) 
(Gillman et al. 2010). However, the sample 
size of this study was relatively small and may 
be underpowered.

Despite great improvements in air quality 
following the Clean Air Act (1963), air 
pollution remains a significant public health 
problem in the United States. According 
to the State of the Air 2013 report by the 
American Lung Association (2013), 41% 
of the population in the United States still 

lives in counties that have unhealthy levels of 
air pollution. Evidence on the effects of air 
pollution on diabetes mellitus in the general 
population has been reported in several 
recent epidemiological studies. A study of 
the Danish Diet, Cancer and Health cohort 
reported that traffic-related air pollution, 
using nitrogen dioxide (NO2) as a proxy, 
was associated with higher mortality from 
diabetes (Raaschou-Nielsen et al. 2013). Two 
studies in North America reported positive 
associations of NO2 and PM2.5 (particulate 
matter with diameter ≤ 2.5 μm) with the 
prevalence of diabetes (Brook et al. 2008; 
Pearson et al. 2010). In addition, positive 
associations have been found between 
air pollution and insulin resistance, the 
pathological hallmark underlying diabetes 
(Andersen et al. 2012; Chuang et al. 2011; 
Coogan et al. 2012; Kelishadi et al. 2009; 
Kim and Hong 2012; Krämer et al. 2010; 
Puett et al. 2011; Sun et al. 2013).

Although the biological mechanisms 
leading to GDM are still unclear, it is plau-
sible that air pollution during pregnancy 
may increase the risk of GDM by inducing 
oxidative stress, and consequently inflam-
mation, insulin resistance, dyslipidemia, and 
systemic metabolic dysfunction (Andersen 
et  al. 2012; Chuang et  al. 2011; Coogan 
et al. 2012; Everett et al. 2010; Hotamisligil 
et al. 1993; Kelishadi et al. 2009; Kim and 
Hong 2012; Krämer et al. 2010; Lamb and 
Goldstein 2008; Puett et  al. 2011; Sun Y 
et al. 2006; Sun Z et al. 2013). Although 

Address correspondence to X.  Xu, University 
of Florida, College of Public Health and Health 
Professions and College of Medicine, Department 
of Epidemiology, 2004 Mowry Rd., CTRB 4219, 
Gainesville, FL 32610 USA. Telephone: (352) 273-
5362. E-mail: xhxu@phhp.ufl.edu

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1408456).

This work was supported by grant K01ES019177 
from the National Institute of Environmental 
Health Sciences, National Institutes of Health 
(NIEHS/NIH). The data were provided by the 
Bureau of Vital Statistics, Florida Department of 
Health (DOH). 

All conclusions are the authors’ own and do not 
necessarily reflect the opinion of the NIEHS/NIH or 
the Florida DOH.

The authors declare they have no actual or potential 
competing financial interests.

Received: 21 March 2014; Accepted: 17 March 
2015; Advance Publication: 20 March 2015; Final 
Publication: 1 September 2015.

Association of Atmospheric Particulate Matter and Ozone with Gestational 
Diabetes Mellitus
Hui Hu,1 Sandie Ha,1 Barron H. Henderson,2 Tamara D. Warner,3 Jeffrey Roth,3 Haidong Kan,4 and Xiaohui Xu1

1Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, 2Department of Environmental 
Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, and 3Department of Pediatrics, College 
of Medicine, University of Florida, Gainesville, Florida, USA; 4Department of Environmental Health, School of Public Health, Fudan 
University, Shanghai, China

Background: Ambient air pollution has been linked to the development of gestational diabetes 
mellitus (GDM). However, evidence of the association is very limited, and no study has estimated 
the effects of ozone. 

Objective: Our aim was to determine the association of prenatal exposures to particulate matter 
≤ 2.5 μm (PM2.5) and ozone (O3) with GDM.

Methods: We used Florida birth vital statistics records to investigate the association between 
the risk of GDM and two air pollutants (PM2.5 and O3) among 410,267 women who gave 
birth in Florida between 2004 and 2005. Individual air pollution exposure was assessed at the 
woman’s home address at time of delivery using the hierarchical Bayesian space–time statis-
tical model. We further estimated associations between air pollution exposures during different 
trimesters and GDM.

Results: After controlling for nine covariates, we observed increased odds of GDM with 
per 5-μg/m3 increase in PM2.5 (ORTrimester1 = 1.16; 95% CI: 1.11, 1.21; ORTrimester2 = 1.15; 
95% CI: 1.10, 1.20; ORPregnancy = 1.20; 95% CI: 1.13, 1.26) and per 5-ppb increase in O3 
(ORTrimester1  =  1.09; 95%  CI: 1.07,  1.11; ORTrimester2  =  1.12; 95%  CI: 1.10,  1.14; 
ORPregnancy = 1.18; 95% CI: 1.15, 1.21) during both the first trimester and second trimester as well 
as the full pregnancy in single-pollutant models. Compared with the single-pollutant model, the 
ORs for O3 were almost identical in the co-pollutant model. However, the ORs for PM2.5 during 
the first trimester and the full pregnancy were attenuated, and no association was observed for 
PM2.5 during the second trimester in the co-pollutant model (OR = 1.02; 95% CI: 0.98, 1.07).

Conclusion: This population-based study suggests that exposure to air pollution during pregnancy 
is associated with increased risk of GDM in Florida, USA.
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evidence of adverse effects of air pollution on 
birth defects and pregnancy complications 
such as gestational hypertension has been 
widely reported in the last decade (S̆rám et al. 
2005; Xu et al. 2014), studies focusing on the 
association between ambient air pollution and 
GDM are still very limited. To our knowl-
edge, only three previous studies have inves-
tigated air pollution and GDM. Malmqvist 
et al. (2013) reported a positive association 
between NOx exposure and GDM, whereas 
an earlier study by van den Hooven et al. 
(2009) reported no association. A recent 
study found that exposure to PM2.5 and 
other traffic-related pollutants during preg-
nancy has been associated with impaired 
glucose tolerance but not GDM in women 
from Boston, Massachusetts, USA (Fleisch 
et al. 2014). Given the inconclusive results 
and limited types of pollutants examined in 
previous studies, investigation of the asso-
ciation between GDM and other criteria air 
pollutants such as ozone (O3) is warranted. 
In this study, we analyzed Florida birth vital 
statistics records for 410,267 women who 
gave birth during 2004–2005, to examine 
the association between the risk of GDM 
and two ambient air pollutants, PM2.5 and 
O3, assessed using the hierarchical Bayesian 
space–time statistical model (HBM) devel-
oped by the U.S. Environmental Protection 
Agency (EPA) and the Centers for Disease 
Control and Prevention’s (CDC) National 
Environmental Public Health Tracking 
Network (U.S. EPA 2014). We also investi-
gated whether associations between exposure 
to air pollution and GDM varied among 
different gestational periods (trimesters and 
full pregnancy).

Materials and Methods
Study population. We obtained birth record 
data from the Bureau of Vital Statistics and 
Office of Health Statistics and Assessment, 
Florida Department of Health (Jacksonville, 
FL; http://www.floridahealth.gov/certificates/
certificates/). The data included all registered 
live births in Florida between 1 January 2004 
and 31 December 2005 (n = 445,028). Births 
with maternal residential addresses outside 
Florida (n = 4,672) were excluded. We used 
ArcGIS V10.1 software (ESRI, Redlands, 
CA, USA) to geocode the mother’s resi-
dential address at birth, and 439,370 cases 
(99.8%) were successfully geocoded. Cases 
whose maternal residential address could not 
be geocoded were excluded (n = 986). We 
further excluded 937 cases because of missing 
values related to gestational age. In addition, 
we excluded women who had non-singleton 
deliveries (n = 13,367), previous preterm 
births (n = 5,591), or prepregnancy diabetes 
mellitus (n = 2,821). Births with congenital 
abnormalities (n  =  5,450), with weight 

<  400  g (n  =  240), or with a gestational 
age < 24 or > 42 weeks (n = 697) were also 
excluded. Following these exclusion criteria 
a total of 410,267 women remained in the 
study population. The research protocol for 
this study was approved by the Institutional 
Review Board at the University of Florida 
and the Florida Department of Health. The 
study was exempt from informed consent 
requirements because it involves no more 
than a minimal risk to the privacy of indi-
viduals and the research could not practicably 
be conducted without this exemption.

Outcome assessment .  All  pregnant 
women in Florida are requested to screen for 
GDM through an oral glucose challenge test 
(OGCT) between the 24th and 28th weeks 
of the pregnancy. This test requires each 
pregnant woman to drink about 5 oz of a 
syrupy glucose solution that contains 50 g of 
sugar and then have her blood drawn 1 hour 
after drinking the solution. If a blood glucose 
level reaches >  140  mg/dL 1  hr after the 
OGCT, it indicates the possibility of GDM. 
Then the pregnant woman is further referred 
to another 3-hr fasting 100-g oral glucose 
tolerance test (OGTT). The test measures 
fasting blood glucose level and blood glucose 
levels at 1, 2, and 3 hr after drinking the 
solution. The following values are considered 
to be abnormal during the OGTT: fasting 
blood glucose level ≥ 95 mg/dL, 1-hr blood 
glucose ≥ 180 mg/dL, 2-hr blood glucose 
≥  155  mg/dL, and 3-hr blood glucose 
≥ 140 mg/dL. Pregnant women are classi-
fied as having GDM if two abnormal values 
are recorded during the OGTT (American 
Diabetes Association 2003).

Air pollution exposure assessment . 
Air pollution exposure data was obtained 
from the U.S. EPA and CDC’s National 
Environmental Public Health Tracking 
Network (2003–2005) (U.S. EPA 2014). 
The U.S. EPA provided the HBM data 
from 2001 to 2008 for two air pollutants, 
PM2.5 and O3, with spatial resolutions of 
12 km × 12 km and 36 km × 36 km across 
the continental areas in the United States. 
Daily air pollution concentration for each 
grid was also included. Compared with 
the widely used air monitoring data from 
the U.S. EPA’s Air Quality System (AQS; 
http://www.epa.gov/airquality/airdata), the 
HBM data could provide pollutant values 
at unobserved locations across the entire 
spatial field of interest. The U.S. EPA has 
used two important advanced methods, the 
Community Multiscale Air Quality (CMAQ) 
model and the HBM (McMillan et al. 2010), 
to produce the interpolated concentrations of 
air pollutants in space and time. The HBM 
approach combines the AQS monitoring 
data with CMAQ modeled data, which 
include emission, meteorology, and chemical 

modeling components, to predict air quality 
data for a specific time and spatial scale 
(McMillan et al. 2010). Given the limited 
and sparsely located air monitors in Florida, 
we used the 12-km grid output from the 
HBM data, which can account for the poor 
spatial coverage of air monitoring data.

Each mother’s geocoded residential 
address at the time of her child’s birth was 
spatially linked to the corresponding grid of 
the HBM data. Exposures were calculated as 
daily concentrations averaged over each of the 
first two trimesters (trimester 1: 1–13 weeks; 
trimester 2: 14–26 weeks) and the full gesta-
tional period determined by gestational age 
and delivery date of each woman. Gestational 
age was determined mainly by ultrasound. 
When ultrasound data were not available, 
clinical examination or last menstrual period 
was used to estimate gestational age.

Covariates. Information on maternal 
characteristics such as age, race/ethnicity, 
marital status, pregnancy smoking status, 
season and year of conception, and prenatal 
care status was obtained directly from the 
births records. Maternal age at delivery was 
categorized into six groups, with 5-year incre-
ments for women 20–40 years old, as well as 
two additional groups for < 20 and ≥ 40 years 
old. Race/ethnicity was categorized as non-
Hispanic white, non-Hispanic black, Mexican 
American, Puerto Rican, Cuban American, 
Haitian American, and others. In addition, 
a dichotomous variable was used to indicate 
marital status. Maternal education was 
divided into three categories: < high school, 
high school or equivalent, and > high school. 
Pregnancy smoking status was categorized into 
three levels based on self-reported number of 
cigarettes smoked per day during pregnancy: 
nonsmokers, smokers with < 10 cigarettes/day, 
and smokers with ≥ 10 cigarettes/day. Season 
[warm (June–November) or cool (December–
May)] and year (2003, 2004, or 2005) of 
conception were also treated as categorical vari-
ables. Prenatal care status was categorized into 
five groups: no care, began in first trimester, 
second trimester, or third trimester, as well as 
an additional group for subjects with missing 
values. Furthermore, we extracted census block 
group–level median household income from 
the 2000 Census (http://www2.census.gov/
census_2000/datasets), and linked it to each 
woman. Household income was categorized 
into quartiles (< US$29,663, US$29,663–
US$38,056, US$38,056–US$49,375, and 
≥ US$49,375). We also obtained cartographic 
boundary file for urban areas from the 2000 
Census to determine the urbanization status 
(urban or rural) where each woman lived. No 
information was available on other risk factors 
for GDM such as maternal prepregnancy 
BMI, family history of type 2 diabetes, and low 
physical activity.
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Statistical analysis. We examined the 
distribution of categorical covariates and 
continuous exposures between women with 
GDM and those without GDM. Logistic 
regression models were used to investigate the 
association between exposure to air pollution 
during different trimesters of pregnancy and 
risks of GDM. Subjects with missing values of 
maternal age (n = 45), race/ethnicity (n = 6), 
education (n  =  3,821), or marital status 
(n = 83) were excluded, leaving 13,943 women 
with GDM out of a total of 406,334 women 
with complete covariate data. PM2.5 and O3 
were analyzed as continuous variables. Both 
an unadjusted model and an adjusted model 
controlling for maternal age, race/ethnicity, 
education, marital status, prenatal care, season 
and year of conception, urbanization, and 
median household income at census block 
group level were used. Odds ratios (ORs) and 
95% confidence intervals (CIs) (per 5-μg/m3 
increase in PM2.5 or per 5-ppb increase in O3) 
were reported for each pollutant during specific 
pregnancy periods. Co-pollutant logistic 
models were also implemented to evaluate 
potential confounding by co-pollutants.

Sensitivity analyses. We conducted several 
sensitivity analyses to test the robustness of 
our results. First, to account for the potential 
bias created by using an indicator for missing 
data of prenatal care, we conducted multiple 
imputation for all missing data using chained 
equations (White et al. 2011). All covariates 
as well as exposure and outcome variables were 
included in the imputation process, and 50 
imputed data sets were generated. Second, 
to account for the potential underdiagnoses 
of GDM, we assumed an underreported rate 
of 0.5% and 1.0% among women without 
GDM, and simulated data sets were gener-
ated by randomly assigning 0.5% and 1.0% 
of subjects without GDM as GDM cases with 
500 repeats using the Monte Carlo method. 
Then we made the comparisons between 
the results from the simulated data and our 
original results to check whether the under-
diagnosed cases have influenced the observed 
effects. Third, to account for the potential 
misclassification of exposure, we performed 

two sets of sensitivity analyses. In the first set 
of capture-area analyses, only women living 
within 5 mi from any AQS monitors were 
included, and two separated analyses were 
conducted for all eligible women and only 
for eligible women with nonmissing data 
for at least 75% of days. In the second set of 
analyses, we used interpolated 1-km × 1-km 
data for the exposure assessment. To create 
the 1-km × 1-km exposure field, we applied a 
bicubic spline to the 12-km × 12-km gridded 
HBM product and output on a 1-km × 1-km 
grid that included the original 12-km vertices. 
This approach provides finer resolution, but 
cannot reproduce sub–12-km concentra-
tion peaks or troughs. Fourth, we performed 
the analyses without adjusting for season 
of conception to account for the possibility 
that conception season may adjust away all 
seasonal influences on the variation in the 
pollutants such that only spatial differences 
were left, which might be much more easily 
confounded by socioeconomic status (SES)–
related factors. We also performed the analyses 
after additionally adjusting for smoking 
during pregnancy. Finally, to account for 
the potential overadjusting of urbanization 
due to its correlation with air pollutants, we 
performed a stratified analyses by urban–rural 
areas. All statistical analyses were conducted 
using SAS V9.3 (SAS Institute Inc., 
Cary, NC, USA).

Results
Of the 410,267 women included in this 
study, 14,032 (3.4%) had GDM, including 
406,334 with complete data for all covariates 
(n = 13,943 with GDM). Table 1 shows the 
distribution of exposures to PM2.5 and O3 for 
each pregnancy period analyzed in this study. 
Women with GDM had slightly higher levels 
of PM2.5 and O3 exposure compared with 
those without GDM during all pregnancy 
periods (all p < 0.001). Weak correlations 
were observed between PM2.5 and O3 in all 
gestational periods (Pearson’s correlation coef-
ficients range from 0.21 to 0.39).

Table 2 shows the demographic charac-
teristics of women by GDM status. Women 

with GDM were older and less likely to 
belong to non-Hispanic black racial/ethnic 
categories. Higher proportions of women 
with GDM were married and had higher 
education and income levels. GDM cases 
were more likely among women who started 
prenatal care early and whose conception 
began in the warm season or recent years.

Table  3 provides the unadjusted and 
adjusted ORs of single-pollutant logistic 
regression models predicting GDM from 
exposure to PM2.5 and O3 during different 
pregnancy periods. After controlling for all 
nine covariates, increased odds of GDM for 
a 5-μg/m3 increase in PM2.5 were observed 
during both the first and second trimesters 
(ORTrimester1 = 1.16; 95% CI: 1.11, 1.21; 
ORTrimester2 = 1.15; 95% CI: 1.10, 1.20); 
and the full pregnancy (OR = 1.20; 95% CI: 
1.13, 1.26). Associations were also found 
between GDM and O3. The odds of GDM 
were higher for a 5-ppb increase in exposure 
to O3 during the first and second trimesters 
(ORTrimester1 = 1.09; 95% CI: 1.07, 1.11; 
ORTrimester2 = 1.12; 95% CI: 1.10, 1.14), 
and over the course of the entire pregnancy 
(OR = 1.18; 95% CI: 1.15, 1.21).

The  re su l t s  f rom the  sens i t iv i ty 
analyses are presented in the Supplemental 
Material. Specifically, multiple imputation 
was conducted in the first set of sensitivity 
analyses to assess the potential effects of 
missing data on the results, and we observed 
ORs almost identical to the original results 
(see Supplemental Material, Table  S1). 
Second, the Monte Carlo method was used 
to generate two sets of simulated data sets 
assuming the underreported rate of GDM 
was 0.5% and 1.0%. Compared with the 
original results, the ORs from the simulated 
data sets slightly attenuated, but the conclu-
sions remain consistent (see Supplemental 
Material, Table S2). Third, we examined 
the effects of potential misclassifications 
of exposure on the results separately using 
capture-area analyses and the interpolated 
1-km × 1-km HBM data. Compared with 
the original results, we observed comparable 
ORs for O3 during the second trimester and 

Table 1. Exposure information concerning PM2.5 and O3 by GDM status among women who gave birth in 2004–2005 in Florida, USA (n = 14,032 with GDM, 
n = 396,235 without GDM, and total n = 410,267).

Exposure/statistics

Trimester 1 Trimester 2 Full pregnancy

GDM No GDM Total GDM No GDM Total GDM No GDM Total

PM2.5 (μg/m3)
Mean ± SD 9.84 ± 2.16 9.72 ± 2.07 9.73 ± 2.07 9.94 ± 2.09 9.88 ± 2.06 9.88 ± 2.06 10.03 ± 1.71 9.93 ± 1.67 9.93 ± 1.67
Median 9.75 9.64 9.65 9.87 9.76 9.76 9.97 9.90 9.91
IQR 2.68 2.61 2.61 2.63 2.61 2.61 2.06 2.02 2.02

O3 (ppb)
Mean ± SD 37.71 ± 6.14 37.20 ± 6.04 37.22 ± 6.04 38.17 ± 6.10 37.52 ± 6.10 37.54 ± 6.10 37.85 ± 4.01 37.38 ± 4.10 37.40 ± 4.10
Median 36.73 36.48 36.48 37.65 36.92 36.95 38.40 37.82 37.84
IQR 8.24 7.82 7.83 8.46 7.99 8.00 6.94 7.10 7.09

Correlation between PM2.5 and O3 0.39 0.39 0.39 0.35 0.34 0.34 0.21 0.22 0.22

IQR, interquartile range.
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PM2.5 during the second trimester and full 
pregnancy period in the capture-area analyses. 
However, attenuated ORs were observed for 
O3 during the first trimester and the full preg-
nancy period, and no significant association 
was found for PM2.5 in the first trimester. 
On the other hand, the results from the inter-
polated HBM in the 1-km × 1-km resolu-
tion showed consistent ORs with the original 
results (see Supplemental Material, Table S3). 
Fourth, we assessed whether adjusting for 
smoking during pregnancy may bias the 
findings, and we observed consistent ORs 
with the original results. We also analyzed the 
data without adjusting for season of concep-
tion, and consistent results were observed 
except for the slightly attenuated OR for 
O3 in the first trimester (see Supplemental 
Material, Table  S4). Last, a stratified 
analyses by urbanization was performed to 
examine the potential overadjustment of it, 
and no statistically significant difference was 
observed between the nonstratified results 
and the stratified results (see Supplemental 
Material, Table S5).

The results of the co-pollutant models are 
provided in Supplemental Material, Table S6. 
Figure 1 compares the results obtained from 
single- and co-pollutant continuous models. 
The ORs for O3 after adjusting for PM2.5 were 
almost identical to the ORs from the single-
pollutant model. However, the ORs for PM2.5 
during the first trimester and the full preg-
nancy attenuated after adjusting for O3, and 
no association was observed for PM2.5 during 
the second trimester in the co-pollutant model 
(OR = 1.02; 95% CI: 0.98, 1.07 compared 
with OR = 1.15; 95% CI: 1.10, 1.20 from the 
single-pollutant model).

Discussion
We examined the association of GDM with 
PM2.5 and O3 during different pregnancy 
periods using Florida birth vital statistics 
records and the U.S. EPA and CDC’s HBM 
air pollution data, which have both good 
spatial and temporal coverage. When assessed 
in single-pollutant models, GDM was signifi-
cantly associated with per 5-unit increases 
in both PM2.5 and O3 during the first and 
second trimesters and the full pregnancy. The 
associations were also found in co-pollutant 
models for PM2.5 exposure during the first 
trimester and O3 exposure during all preg-
nancy periods we examined. The associations 
persisted with adjustment for confounding 
by maternal characteristics such as age, race/
ethnicity, education, marital status, prenatal 
care, season and year of conception, urbaniza
tion, and median household income at census 
block group level. The results of this study 
add to the emerging evidence linking air 
pollution exposure during pregnancy to preg-
nancy complications such as GDM.

The causal mechanisms underlying the 
associations between air pollution and GDM 
are still unclear; however, the results observed 
in this study are consistent with several 
potential pathways suggested by previous 
studies. Ambient air pollutants such as PM 
and O3 have been reported to be associated 
with increased insulin resistance, dyslipid-
emia, and systemic metabolic dysfunction 
(Andersen et al. 2012; Chuang et al. 2011; 
Coogan et al. 2012; Kelishadi et al. 2009; 
Kim and Hong 2012; Krämer et al. 2010; 
Puett et al. 2011; Sun et  al. 2013), which 

are all precursors associated with GDM. 
PM contains many toxic chemicals that are 
regarded as reactive oxygen species (ROS) 
(Lemaire and Livingstone 1997; Sun et al. 
2006), which can cause oxidative damage on 
target tissues (Ames et al. 1993). The imbal-
ance between the production of ROS and 
antioxidant defenses is acknowledged as 
one of the main causes of insulin signaling–
pathways alterations (Lamb and Goldstein 
2008), and a number of studies have linked 
ROS to insulin resistance (Goldstein et al. 
2005; Schulz et  al. 2007). In addition, a 

Table 2. Maternal characteristics by GDM status among women who gave birth in 2004–2005 in Florida, 
USA [n (%)].

Maternal characteristic
GDM  

(n = 14,032) 
No GDM  

(n = 396,235) 
Total 

(n = 410,267) 
Maternal age (years)

< 20 451 (3.2) 44,064 (11.1) 44,515 (10.9)
20–24 2,125 (15.1) 103,600 (26.2) 105,725 (25.8)
25–29 3,466 (24.7) 103,679 (26.2) 107,145 (26.1)
30–34 4,265 (30.4) 87,758 (22.2) 92,023 (22.4)
35–39 2,844 (20.3) 44,608 (11.3) 47,452 (11.6)
≥ 40 880 (6.3) 12,482 (3.2) 13,362 (3.3)
Missing 1 (0.0) 44 (0.0) 45 (0.0)

Race/ethnicity
Non-Hispanic white 6,674 (47.6) 188,029 (47.5) 194,703 (47.5)
Non-Hispanic black 2,041 (14.6) 70,355 (17.8) 72,396 (17.7)
Mexican American 1,253 (8.9) 28,370 (7.2) 29,623 (7.2)
Puerto Rican 634 (4.5) 18,831 (4.8) 19,465 (4.7)
Cuban American 590 (4.2) 20,123 (5.1) 20,713 (5.1)
Haitian American 541 (3.9) 12,573 (3.2) 13,114 (3.2)
Other 2,299 (16.4) 57,948 (14.6) 60,247 (14.7)
Missing 0 (0.0) 6 (0.0) 6 (0.0)

Maternal education
< High school 2,524 (18.0) 83,066 (21.0) 85,590 (20.9)

High school or equivalent 4,207 (30.0) 126,013 (31.8) 130,220 (31.7)
> High school 7,213 (51.4) 183,423 (46.3) 190,636 (46.5)
Missing 88 (0.6) 3,733 (0.9) 3,821 (0.9)

Marital status
Married 9,697 (69.1) 232,727 (58.7) 242,424 (59.1)
Not married 4,335 (30.9) 163,425 (41.2) 167,760 (40.9)
Missing 0 (0.0) 83 (0.0) 83 (0.0)

Smoking during pregnancy
No 12,769 (91.0) 360,016 (90.9) 372,785 (90.9)
Yes, < 10 cigarettes/day 483 (3.4) 14,163 (3.6) 14,646 (3.6)
Yes, ≥ 10 cigarettes/day 581 (4.1) 16,852 (4.3) 17,433 (4.3)
Missing 199 (1.4) 5,204 (1.3) 5,403 (1.3)

Season of conception
Warm 6,942 (49.5) 192,430 (48.6) 199,372 (48.6)
Cool 7,090 (50.5) 203,805 (51.4) 210,895 (51.4)

Year of conception
2003 4,131 (29.4) 142,945 (36.1) 147,076 (35.9)
2004 7,479 (53.3) 199,682 (50.4) 207,161 (50.5)
2005 2,422 (17.3) 53,608 (13.5) 56,030 (13.7)

Prenatal care began
No care 59 (0.4) 4,987 (1.3) 5,046 (1.2)
First trimester 7,698 (54.9) 188,869 (47.7) 196,567 (47.9)
Second trimester 2,022 (14.4) 57,504 (14.5) 59,526 (14.5)
Third trimester 570 (4.1) 14,115 (3.6) 14,685 (3.6)
Missing 3,683 (26.3) 130,760 (33.0) 134,443 (32.8)

Residential area
Urban 12,017 (85.6) 342,936 (86.6) 354,953 (86.5)
Rural 2,015 (14.4) 53,299 (13.5) 55,314 (13.5)

Median household income (US$)
< 29,663 3,326 (23.7) 99,224 (25.0) 102,550 (25.0)
29,663–38,056 3,494 (24.9) 99,047 (25.0) 102,541 (25.0)
38,056–49,375 3,648 (26.0) 98,825 (24.9) 102,473 (25.0)
≥ 49,375 3,564 (25.4) 99,139 (25.0) 102,703 (25.0)



Air pollution and gestational diabetes

Environmental Health Perspectives  •  volume 123 | number 9 | September 2015	 857

recent animal study also showed O3’s ability 
to induce glucose intolerance and systemic 
metabolic effects (Bass et al. 2013). In their 
study on young and aged Brown Norway 
rats, Bass et  al. (2013) observed increased 
α2‑macroglobulin, adiponectin, and osteo-
pontin as well as decreased phosphorylated 
insulin receptor substrate‑1 in liver and 
adipose tissues following acute O3 exposure. 
Endoplasmic reticular stress was suggested 
to be the consequence of O3-induced acute 
metabolic impairment. Furthermore, another 
potential pathway induced by air pollution 
is inflammation, which may also lead to the 
development of insulin resistance (Everett 
et al. 2010; Hotamisligil et al. 1993).

Cigarette smoking has been widely 
reported to be associated with type  2 
diabetes (Willi et al. 2007; Zhu et al. 2014), 
and we initially considered it as a potential 
confounder in our analyses. However, given 
the fact that smoking is not generally consid-
ered a risk factor for GDM as well as the 
consistent results we observed with or without 
adjusting for it in the sensitivity analyses, we 
finally present results without adjusting for 
smoking. In addition, although the underlying 
mechanisms remain unknown, our findings 
that air pollution may have an impact on risk 
of GDM does not conflict with the null asso-
ciation between smoking and GDM because 
their toxic components are largely different.

Our study has several strengths. First, 
compared with the air monitoring data 
that have been widely used in other studies, 
the daily temporal resolution and the 
12-km × 12-km spatial resolution of HBM 
air pollution data used in this study allowed 
us to estimate mean air pollution concen-
trations during different pregnancy periods 
without excluding subjects not covered by 
air monitors, thus reducing the potential 
for selection bias. Second, previous studies 
focused only on small areas and examined 
limited types of air pollutants. With the 
HBM air pollution data, we were able to 
include all pregnant women in the study 
period throughout the entire state of Florida 
and investigate the association between GDM 
and two common air pollutants, PM2.5 and 
O3, which have not been reported in the 
extant literature. Furthermore, we used both 
single- and co-pollutant models to examine 
the association between air pollution and 
GDM. The robust results of O3 observed 
from different models suggest that it may 
have effects on GDM independent of PM2.5. 
This finding is consistent with recent experi-
mental studies (Bass et al. 2013). It is also 
consistent with the positive association found 
between NOx (nitrogen oxides) and GDM 
(Malmqvist et al. 2013) because NOx is one 
main precursor of O3 (Sillman 1999). Finally, 
the robust results from the sensitivity analyses 

suggested that the study was not likely to be 
largely biased by the missing data, exposure 
and outcome misclassifications, and under-
adjustment of smoking during pregnancy 
or overadjustments of season of conception 
and urbanization.

This study had several limitations. First, it 
is possible that GDM may be underdiagnosed 
in the source vital statistics records. Second, as 
reported by the American Diabetes Association 
(2013), more women of childbearing age have 
type 2 diabetes due to an epidemic of obesity 
and diabetes in recent years. This trend may 
result in an increase in the number of women 
with undiagnosed type 2 diabetes, leading to 
potential misclassification of GDM in this 
study. However, because our study period 
covered the years 2003–2005, our results are 
less likely to be biased by the effects of undiag-
nosed diabetes in recent years. Third, informa-
tion on daily mobility and behavior patterns 
was not available for this study. The absence 
of these factors may introduce misclassifica-
tions of exposure. A high correlation between 
personal monitored air pollution measurement 
and monthly aggregated modeled air pollution 
measurement has been reported in a cohort 
of 85 pregnant women in Manchester and 
Blackpool, United Kingdom (Hannam et al. 
2013), although we cannot assess its compa-
rability to our study due to the lack of daily 
mobility data. Fourth, residential mobility 
during pregnancy was also not available in this 
study. It may be possible that some subjects 
in this study lived elsewhere in the early stage 
of their pregnancy and thus were exposed to 
different levels of air pollution. Fifth, although 
the use of HBM air pollution data can avoid 
selection bias, the 12-km × 12-km resolu-
tion is very crude. Although the spatial vari-
ability of O3 is low, the variability of PM2.5 
may be a concern, which includes a large-
scale regional component and a local source 
component. Isakov et al. (2012) suggested 
that the regional component provides most 
of the mass, going as far as to use PM2.5 as an 

Table 3. ORs (95% CIs) for risk of GDM by air pollutants (PM2.5 and O3) and pregnancy period of exposure 
among women who gave birth in 2004–2005 in Florida, USA.

Exposure n (GDM/total)
Unadjusted  
OR (95% CI) n (GDM/total)a

Adjusted  
ORb (95% CI)

PM2.5 (per 5 μg/m3)
Trimester 1 14,032/410,267 1.15 (1.10, 1.19) 13,943/406,334 1.16 (1.11, 1.21)
Trimester 2 14,032/410,267 1.08 (1.04, 1.12) 13,943/406,334 1.15 (1.10, 1.20)
Full pregnancy 14,032/410,267 1.19 (1.13, 1.25) 13,943/406,334 1.20 (1.13, 1.26)

O3 (per 5 ppb)
Trimester 1 14,032/410,267 1.07 (1.06, 1.09) 13,943/406,334 1.09 (1.07, 1.11)
Trimester 2 14,032/410,267 1.09 (1.08, 1.10) 13,943/406,334 1.12 (1.10, 1.14)
Full pregnancy 14,032/410,267 1.16 (1.13, 1.18) 13,943/406,334 1.18 (1.15, 1.21)

aWomen with complete data for all covariates. bAdjusted for maternal age, race, education, marital status, season of 
conception, year of conception, prenatal care began, urbanization, and median household income.

Figure 1. Adjusted log(OR) for risk of GDM with per 5 units increase in gestational exposure to pollutant for single- and co-pollutant models among women who 
gave birth in 2004–2005 in Florida, USA. Diamonds reflect the central estimate; whiskers represent the 95% CIs.
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example of spatially homogeneous pollutants. 
Therefore, exposure to PM2.5 is not likely to 
have extremely fine-scale variability in most 
places in Florida. In addition, highly variable 
exposure fields would also be inappropriate 
for use with residential address only. However, 
future studies with higher spatial resolution 
modelling data and detailed time–activity 
patterns are warranted. Sixth, although several 
important confounders have been included 
in this study, no information on such other 
risk factors for GDM as prepregnancy BMI, 
family history of type 2 diabetes, and physical 
activity was available. These unadjusted factors 
may influence the results. For example, if obese 
women are more likely to live in areas with 
higher air pollution, the observed effects of 
air pollution on GDM in this study may be 
overestimated without controlling for this 
factor. In addition, low population densities, 
poor street connectivity, and lack of sidewalks 
in rural areas have been linked to increased 
physical inactivity and obesity (Eberhardt and 
Pamuk 2004), which are also characterized by 
having higher O3 concentrations. Although 
we adjusted for urbanization in this study, 
residual confounding may still exist. Thus, 
future studies with more detailed information 
on these factors are warranted to confirm our 
findings. Another potential limitation of the 
study is the unavailability of traffic noise data. 
Traffic noise induces a stress response and 
disturbs sleep, which has been associated with 
higher levels of stress hormone and decreased 
insulin levels and sensitivity (Sørensen et al. 
2013). Both maternal stress and/or distur-
bances of sleep during pregnancy increase the 
risk of GDM. Because road traffic is the main 
source for both air pollution with PM2.5 and 
noise in urban areas, the mutual confounding 
is a concern. Finally, the results observed in 
birth registry data may also be influenced by 
the fixed cohort bias (Strand et  al. 2011). 
Fixed cohort bias is a type of selection bias that 
could happen in retrospective cohorts with 
a fixed start and end date when short preg-
nancies are missed at the start of the study, 
and longer pregnancies are missed at the end. 
Because GDM is linked to preterm birth, 
fixed cohort bias may exist if GDM cases are 
more likely to be excluded at the beginning 
and to be included at the end of the study. 
However, given the facts that fixed cohort bias 
tends to decrease when the study has longer 
study period and/or when it has a day and 
month of the start date (i.e., 1 January 2004) 
just before day and month of the end date 
(i.e., 31 December 2005), the potential for this 
bias was reduced in this study.

Conclusion
Using Florida birth vital statistics records, 
we observed a positive association between 
increased prevalence of GDM and exposure 

to PM2.5 and O3 during each trimester of 
pregnancy and the full pregnancy among 
women giving birth in 2004 and 2005. This 
study suggests the need for greater atten-
tion on stronger air pollution controls to 
improve the health of pregnant women and 
their offspring.
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